2,023 research outputs found

    Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    Get PDF
    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4--11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 1010 Gpc3^{-3} yr1^{-1} at redshift z=0z=0, peaking at twice this rate at z=0.5z=0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M\textrm{M}_\odot. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.Comment: Minor update to match the version published in MNRAS; 15 pages 10 figure

    Merger rates of double neutron stars and stellar origin black holes: The Impact of Initial Conditions on Binary Evolution Predictions

    Get PDF
    The initial mass function (IMF), binary fraction and distributions of binary parameters (mass ratios, separations and eccentricities) are indispensable input for simulations of stellar populations. It is often claimed that these are poorly constrained significantly affecting evolutionary predictions. Recently, dedicated observing campaigns provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor 2 (insignificant compared with evolutionary uncertainties of typically a factor 10-100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters with exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.Comment: Accepted for publication in Ap

    Has the Stability and Growth Pact Impeded Political Budget Cycles in the European Union?

    Get PDF
    This paper examines whether there is a political budget cycle (PBC) in countries in the euro area. Using a multivariate model for the period 1999-2004 and various election indicators we find strong evidence that the Stability and Growth Pact has not restricted fiscal policy makers in the euro area in pursuing expansionary policies before elections. In an election-year – but not in the year prior to the election – the budget deficit increases. This result is in line with third generation PBC models, which are based on moral hazard. We also find a significant but small partisan effect on fiscal policy outcomes.fiscal policy, political budget cycle, Stability and Growth Pact

    Massive binaries and the enrichment of the interstellar medium in globular clusters

    Full text link
    Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch stars and massive stars rotating near the break-up limit. We discuss the potential of massive binaries as an interesting alternative source of processed material. We discuss observational evidence for mass shedding from interacting binaries. In contrast to the fast, radiatively driven winds of massive stars, this material is typically ejected with low velocity. We expect that it remains inside the potential well of a globular cluster and becomes available for the formation or pollution of a second generation of stars. We estimate that the amount of processed low-velocity material that can be ejected by massive binaries is larger than the contribution of two previously suggested sources combined.Comment: 6 pages, 2 figures, to appear in the proceedings of IAU Symposium 266, "Star Clusters - Basic Galactic Building Blocks throughout Time and Space", 10-14 August 2009, at the general assembly in Rio de Janeiro, Brazi

    Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    Full text link
    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the LMC as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 MM_{\odot}, and are far more dispersed than classical WR stars or luminous blue variables (LBVs). Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 MM_{\odot} or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 MM_{\odot}). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.Comment: Accepted for publication in MNRA

    Binaries are the best single stars

    Full text link
    Stellar models of massive single stars are still plagued by major uncertainties. Testing and calibrating against observations is essential for their reliability. For this purpose one preferably uses observed stars that have never experienced strong binary interaction, i.e. "true single stars". However, the binary fraction among massive stars is high and identifying "true single stars" is not straight forward. Binary interaction affects systems in such a way that the initially less massive star becomes, or appears to be, single. For example, mass transfer results in a widening of the orbit and a decrease of the luminosity of the donor star, which makes it very hard to detect. After a merger or disruption of the system by the supernova explosion, no companion will be present. The only unambiguous identification of "true single stars" is possible in detached binaries, which contain two main-sequence stars. For these systems we can exclude the occurrence of mass transfer since their birth. A further advantage is that binaries can often provide us with direct measurements of the fundamental stellar parameters. Therefore, we argue these binaries are worth the effort needed to observe and analyze them. They may provide the most stringent test cases for single stellar models.Comment: 5 pages, 1 figure, contribution to the proceedings of "The multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph. Coll., 12-16 July 201

    Can low metallicity binaries avoid merging?

    Full text link
    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Z<0.001), 4 solar mass star can endure a 10 to 30 times higher accretion rate before it reaches a certain radius than a star at solar metallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we will present analytic fits to models of accreting stars at various metallicities intended for the use in population synthesis models.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 2 figure

    Measuring Synchronicity and Co-movement of Business Cycles with an Application to the Euro Area

    Get PDF
    We develop multivariate measures of synchronicity and co-movement of business cycles. In addition to synchronicity, the co-movement measure takes differences between cycle amplitudes into account that have been overlooked in most previous studies. We apply the new measures to the euro area. Synchronicity and co-movement for the region as a whole do not exhibit a clear upward tendency. Although several countries saw the similarity of their business cycle vis-`a-vis the euro area reference cycle increase, national business cycles remain fairly diverse. Changes in business cycle amplitudes cause most of the observed change in cycle co-movement.business cycles, synchronisation, concordance, co-movement, cycle amplitudes, euro area

    Binaries at Low Metallicity: ranges for case A, B and C mass transfer

    Full text link
    The evolution of single stars at low metallicity has attracted a large interest, while the effect of metallicity on binary evolution remains still relatively unexplored. We study the effect of metallicity on the number of binary systems that undergo different cases of mass transfer. We find that binaries at low metallicity are more likely to start transferring mass after the onset of central helium burning, often referred to as case C mass transfer. In other words, the donor star in a metal poor binary is more likely to have formed a massive CO core before the onset of mass transfer. At solar metallicity the range of initial binary separations that result in case C evolution is very small for massive stars, because they do not expand much after the ignition of helium and because mass loss from the system by stellar winds causes the orbit to widen, preventing the primary star to fill its Roche lobe. This effect is likely to have important consequences for the metallicity dependence of the formation rate of various objects through binary evolution channels, such as long GRBs, double neutron stars and double white dwarfs.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 3 figure

    LAWLESS WORLD: MAKING AND BREAKING GLOBAL RULES

    Get PDF
    Philippe Sands (Penguin Books, London 2006) Paperback, Pp 432, ISBN 9780141017990, £8.99This being the first book that I have ever read dedicated exclusively to international law, I was not certain what to expect.  I did not feel disappointed or out of my depth with “Lawless World” however, as Professor Sands writes clearly and authoritatively on subject-matter which will be quite familiar to most readers: the Pinochet trial, the Kyoto Protocol, trade rules, foreign investment, Abu Ghraib and Guantanamo, the Iraq War and torture
    corecore